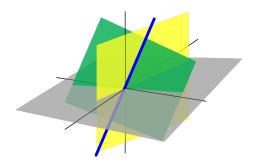
ALGÈBRE LINÉAIRE COURS DU 17 SEPTEMBRE

Jérôme Scherer



4.1.1 Rappels sur les espaces vectoriels

Un espace vectoriel est un ensemble V non vide dont les éléments sont appelés vecteurs. Il est muni de deux opérations.

- **1** L'addition (ou somme) $+: V \times V \to V$ qui associe à deux vecteurs (u, v) leur somme u + v.
- ② L'action $\cdot : \mathbb{R} \times V \to V$ qui associe à un nombre α et un vecteur u leur produit αu .

Ces opérations vérifient huit règles qui expliquent en gros qu'on peut calculer comme on a l'habitude de le faire dans \mathbb{R}^n .

4.1.2 Propriétés

On note ici $0_{\mathbb{R}}$ pour le nombre 0 et 0_V pour le vecteur nul. Bientôt le contexte permettant de distinguer nombres et vecteurs, on oubliera ces indices.

0 est absorbant

On a $0_{\mathbb{R}} \cdot u = 0_V$ pour tout $u \in V$.

Preuve. On écrit
$$0_{\mathbb{R}} \cdot u = (0_{\mathbb{R}} + 0_{\mathbb{R}}) \cdot u = 0_{\mathbb{R}} \cdot u + 0_{\mathbb{R}} \cdot u$$

par distributivité. On ajoute de part et d'autre l'opposé de $0_{\mathbb{R}} \cdot u$ si bien que

$$0_V = 0_{\mathbb{R}} \cdot u$$

après avoir utilisé l'associativité de l'addition.

REMARQUE

L'OPPOSÉ

On a $(-1) \cdot u = -u$ pour tout $u \in V$.

Il suffit de vérifier que $u + (-1) \cdot u = 0_V \dots$

D'AUTRES CORPS DE NOMBRES

On peut définir la notion d'espace vectoriel sur d'autres corps.

- lacktriangle sur les nombres rationnels $\mathbb Q$ ou sur les nombres complexes $\mathbb C$;
- $oldsymbol{\circ}$ sur le corps à deux éléments $\mathbb{F}_2=\{0;1\}$ avec la règle d'addition "binaire" 1+1=0.

On ne peut pas le faire sur les entiers relatifs \mathbb{Z} ! En général on ne peut pas réduire les matrices à coefficients entiers sans passer soudainement dans \mathbb{Q} .

1.3.4 et 4.1.4 Combinaisons linéaires

somme de mulhples réels de vectours

DÉFINITION

Soient $\overrightarrow{v_1}, \ldots, \overrightarrow{v_p}$ des vecteurs de \mathbb{R}^n . Un vecteur

$$\overrightarrow{u} = \lambda_1 \overrightarrow{v_1} + \dots + \lambda_p \overrightarrow{v_p}$$

est appelé combinaison linéaire des vecteurs $\overrightarrow{v_i}$ pour $1 \le i \le p$.

DÉFINITION

Soient v_1, \ldots, v_p des vecteurs d'un espace vectoriel V. Un vecteur

$$u = \lambda_1 v_1 + \cdots + \lambda_p v_p$$

est appelé combinaison linéaire des vecteurs v_i pour $1 \le i \le p$.

a coefficients entiers, les combinaisons 1.3.4 EXEMPLES anéaires forment un réseau. elles remplissent le 5. u+v

EXISTE-T-IL UNE COMBINAISON LINÉAIRE

...des vecteurs
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 et $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ qui donne $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$? $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ to $\alpha_{2}, \alpha_{3} \in \mathbb{R}$ to $\alpha_{3}, \alpha_{4}, \alpha_{5} \in \mathbb{R}$ to $\alpha_{4}, \alpha_{5}, \alpha_{5} \in \mathbb{R}$ to $\alpha_{5}, \alpha_{5}, \alpha_{5}, \alpha_{5}, \alpha_{5}, \alpha_{5} \in \mathbb{R}$ to $\alpha_{5}, \alpha_{5}, \alpha_{5}, \alpha_{5}, \alpha_{5}, \alpha_{5} \in \mathbb{R}$ to $\alpha_{5}, \alpha_{5}, \alpha_{5},$

SUITE 1 2 2 = 2

1.3.5 Résolution de système

- On se donne des vecteurs $\overrightarrow{a_1}, \ldots, \overrightarrow{a_n}$ et \overrightarrow{b} de \mathbb{R}^n .
- On construit la matrice augmentée $A = (\overrightarrow{a_1}, \dots, \overrightarrow{a_n} \mid \overrightarrow{b})$.

Remarque

L'équation vectorielle $x_1 \overrightarrow{a_1} + \cdots + x_n \overrightarrow{a_n} = \overrightarrow{b}$ a les mêmes solutions que le système correspondant à la matrice A.

Point de vue vectoriel

Le vecteur \overrightarrow{b} est combinaison linéaire des vecteurs $\overrightarrow{a_1}, \ldots, \overrightarrow{a_n}$ si et seulement si le système représenté par la matrice A est compatible.

4.1.5 FAIRE DU NEUF AVEC DU VIEUX

DÉFINITION

Un sous-espace W de V est un sous-ensemble de V contenant le vecteur nul tel que

- lacktriangle Stabilité de la somme : si $u,v\in W$, alors $u+v\in W$;
- Stabilité de l'action : si $u \in W$ et $\lambda \in \mathbb{R}$, alors $\lambda u \in W$.

Si W est un sous-espace de V, la somme dans W reste associative, commutative, etc., l'action reste distributive par rapport à l'addition, etc., puisque les calculs dans W sont identiques dans V.

PROPOSITION

Un sous-espace vectoriel est toujours un espace vectoriel.

4.1.5 Sous-espaces vectoriels

Le plus petit sous-espace de V. C'est le sous-espace nul $\{0_V\}$.

Le plus grand sous-espace de V. C'est l'espace V lui-même.

EXEMPLES

- Dans \mathbb{R}^3 une droite passant par l'origine est de la forme $W = \{\lambda \overrightarrow{w} \mid \lambda \in \mathbb{R}\}$ pour un vecteur \overrightarrow{w} non nul de \mathbb{R}^3 . C'est un sous-espace de \mathbb{R}^3 .
- ② Dans l'espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$ le sous-ensemble des fonctions continues $\mathcal{C}(\mathbb{R},\mathbb{R})$ forme un sous-espace.

PREUVES C W 0 (01 alors Dow dichr. iden Dow Ponchion hullo elle centitue. anninges sont alos Cess pas cot -espare vectorie Cas

4.1.6 Sous-espaces et combinaisons linéaires

DÉFINITION

Soient v_1,\ldots,v_k des vecteurs de V. Alors $\mathrm{Vect}\{v_1,\ldots,v_k\}$ est l'ensemble de toutes les combinaisons linéaires $\alpha_1v_1+\cdots+\alpha_kv_k$, pour $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$.

THÉORÈME

 $\operatorname{Vect}\{v_1,\ldots,v_k\}$ est un sous-espace de V.

Remarque. Le vecteur nul 0 appartient à $\text{Vect}\{v_1, \dots, v_k\}$. Il suffit en effet de choisir tous les coefficients $\lambda_i = 0$.

$$0 \cdot v_1 + \cdots + 0 \cdot v_k = 0$$

Convention. Vect
$$\{\emptyset\} = \{0\}$$
.

PREUVE. stabilité Reste à voir la Sovent 0151 + - - + 0250 Vectors assoc X151+ B151 XRJB +BBUB lineaire de combination idem por achon.

4.1.6 ET 1.3.6 TERMINOLOGIE

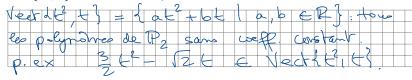
Soit V un espace vectoriel et v_1, \ldots, v_k des vecteurs de V. Soit $W = \mathrm{Vect}\{v_1, \ldots, v_k\}$. Alors

- W est engendré par les vecteurs v_1, \ldots, v_k ;
- les vecteurs v_1, \ldots, v_k sont des générateurs de W;
- l'ensemble $\{v_1, \ldots, v_k\}$ est une partie génératrice de W.

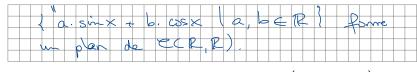
On préfère en général trouver des petites parties génératrices d'un sous-espace donné. Cette question nous occupera par la suite!

4.1.7 ET 1.3.7 EXEMPLES

• Vect $\{t^2, t\}$ est un sous-espace de \mathbb{P}_2 .



 \bigcirc Vect $\{\sin x, \cos x\}$ est un sous-espace de $\mathcal{C}(\mathbb{R}, \mathbb{R})$.



$$egin{aligned} label{aligned} & \text{Dans } \mathbb{R}^4 \text{ \'etudions l'ensemble } W \text{ des vecteurs} & \begin{pmatrix} a-2b+c \\ -a-c \\ b+2a+2c \\ -b \end{pmatrix} \\ & \text{où } a,b,c\in\mathbb{R}. \end{aligned}$$

MEILLEURE DESCRIPTION. De rectors la dan de α action Sous-espace Comme rechers Sont la plan (N est De

SUITE redoriel n est par un 50mespara رع Ð ں In appelle sous-espace Jae W SSS : si est Leverque 50 est un SS-ری Tector. SSC espace W

1.4.1 Produit matriciel

Soit A une matrice $m \times n$. Les colonnes de A sont des vecteurs

$$\overrightarrow{a_1} = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \overrightarrow{a_n} = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \text{ et } \overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

DÉFINITION

La multiplication matricielle est définie par la formule

$$A \cdot \overrightarrow{x} = (\overrightarrow{a_1} \dots \overrightarrow{a_n}) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \cdot \overrightarrow{a_1} + x_2 \cdot \overrightarrow{a_2} + \dots + x_n \cdot \overrightarrow{a_n}$$

Ainsi le *i*-ème coefficient de $A \cdot \overrightarrow{x}$ vaut $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n$.

On multiplie "ligne por wlonne" EXEMPLE. de syptème d'épanos Solution Vectour mahicelle 10 as d a 2n am

1.4.2 Problèmes équivalents

THÉORÈME

Les problèmes suivants sont tous équivalents. Résoudre :

- 2 l'équation vectorielle $x_1 \overrightarrow{a_1} + \cdots + x_n \overrightarrow{a_n} = \overrightarrow{b}$
- **1** le système correspondant à $(\overrightarrow{a_1} \dots \overrightarrow{a_n} | \overrightarrow{b})$

PROPOSITION

L'équation matricielle $A \cdot \overrightarrow{x} = \overrightarrow{b}$ admet une solution si et seulement si \overrightarrow{b} est combinaison linéaire des colonnes de A.

COROLLAIRE

L'équation matricielle $A \cdot \overrightarrow{x} = \overrightarrow{0}$ admet toujours une solution: $\overrightarrow{x} = \overrightarrow{x}$

1.4.2 Exemple

Nous voulons savoir pour quelles valeurs des paramètres b_1 , b_2 , b_3 le système suivant a une solution :

$$\begin{cases} x + y + z = b_1 \\ -x - y + z = b_2 \\ x + y + 3z = b_3 \end{cases}$$

En d'autres termes nous voulons savoir quand le système suivant est compatible :

$$\left(\begin{array}{rrr}1&1&1\\-1&-1&1\\1&1&3\end{array}\right)\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}b_1\\b_2\\b_3\end{array}\right)$$

RÉSOLUTION. / A